Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 78: 1-10, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146873

RESUMEN

d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.


Asunto(s)
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Síndrome del Ovario Poliquístico , Humanos , Femenino , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inositol/genética , Inositol/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Glucosa , Oxidorreductasas
2.
Sci Data ; 9(1): 594, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182956

RESUMEN

Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.


Asunto(s)
Corynebacterium glutamicum , Aminoácidos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Alemania
3.
Microbiol Spectr ; 10(5): e0195022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094194

RESUMEN

Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.


Asunto(s)
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Carbono , Biología Computacional , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Inositol/metabolismo , Simulación del Acoplamiento Molecular , NAD , Oxidorreductasas/metabolismo , Suelo
4.
Metab Eng ; 67: 173-185, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224896

RESUMEN

Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.


Asunto(s)
Enfermedad de Alzheimer , Corynebacterium glutamicum , Preparaciones Farmacéuticas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Bacillus subtilis/genética , Corynebacterium glutamicum/genética , Humanos , Inositol , Ingeniería Metabólica
5.
Plasmid ; 112: 102540, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32991924

RESUMEN

The Escherichia coli/Corynebacterium glutamicum shuttle vector pEKEx2 is an IPTG-inducible expression vector that has been used successfully for the synthesis of numerous proteins in C. glutamicum. We discovered that the leaky gene expression observed for pEKEx2-derived plasmids relates to reduced functionality of the plasmid-encoded repressor LacI carrying a modified C-terminus, while duplicate DNA sequences in the pEKEx2 backbone contribute to plasmid instability. We constructed the pEKEx2-derivatives pPBEx2 and pPREx2, which harbor a restored lacI gene and which lack the unnecessary duplicate DNA sequences. pPREx2 in addition enables fusion of target genes to a C-terminal Strep-tag II coding region for easy protein detection and purification. In the absence of inducer, the novel vectors exhibit tight gene repression in C. glutamicum, as shown for the secretory production of Fusarium solani pisi cutinase and the cytosolic production of green fluorescent protein and C. glutamicum myo-inositol dehydrogenase. Undesired heterogeneity amongst clones expressing cutinase from pEKEx2 was attributed to the loss of a vector fragment containing the cutinase gene, which likely occurred via homologous recombination of the identical flanking DNA sequences. Such loss was not observed for pPBEx2. Using pPREx2, IolG-Strep was successfully produced and purified to homogeneity by Strep-Tactin affinity chromatography, obtaining 1.5 mg IolG with a specific activity of 27 µmol·min-1·(mg protein)-1 from 100 mL culture. The tight gene repression in the absence of inducer and the improved plasmid stability make expression vectors pPBEx2/pPREx2 attractive alternatives to the available molecular tools for genetic manipulation and high-level production of recombinant proteins in C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/genética , Plásmidos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Cromatografía de Afinidad , Corynebacterium glutamicum/metabolismo , Recombinación Homóloga , Proteínas Recombinantes/aislamiento & purificación
6.
Biochim Biophys Acta Bioenerg ; 1860(10): 148033, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226315

RESUMEN

Respiration in aerobic Actinobacteria involves a cytochrome bc1-aa3 supercomplex with a diheme cytochrome c1, first isolated from Corynebacterium glutamicum. Synthesis of a functional cytochrome c oxidase requires incorporation of CuA, CuB, heme a, and heme a3. In contrast to eukaryotes and α-proteobacteria, this process is poorly understood in Actinobacteria. Here, we analyzed the role of a Surf1 homolog of C. glutamicum in the formation of a functional bc1-aa3 supercomplex. Deletion of the surf1 gene (cg2460) in C. glutamicum caused a growth defect and cytochrome spectra revealed reduced levels of cytochrome c and a and an increased level of cytochrome d. Membranes of the Δsurf1 strain had lost the ability to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine, suggesting that Surf1 is essential for the formation of a functional cytochrome aa3 oxidase. In contrast to the wild type, a bc1-aa3 supercomplex could not be purified from solubilized membranes of the Δsurf1 mutant. A transcriptome comparison revealed that the genes of the SigC regulon including those for cytochrome bd oxidase were upregulated in the Δsurf1 strain as well as the copper deprivation-inducible gene ctiP. Complementation studies showed that the Surf1 homologs of Corynebacterium diphtheriae, Mycobacterium smegmatis and Mycobacterium tuberculosis could at least partially abolish the growth defect of the C. glutamicum Δsurf1 mutant, suggesting that Surf1 is a conserved assembly factor for actinobacterial cytochrome aa3 oxidase.


Asunto(s)
Actinobacteria/química , Complejo IV de Transporte de Electrones/biosíntesis , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Proteínas Bacterianas , Corynebacterium glutamicum/química , Grupo Citocromo c , Citocromos c1 , Complejo III de Transporte de Electrones , Oxidorreductasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...